MIXED GEM-DIMETALLIC ORGANIC COMPOUNDS. A NEW CLASS OF MULTI-COUPLING REAGENTS PART 2¹

P. Knochel^{*} and J.F. Normant

Laboratoire de Chimie des Organo-éléments, tour 44 Université P. & M. Curie, 4 place Jussieu 75230 PARIS Cédex 05 France

<u>Summary</u> – The 1-magnesia-1-zincaalkene $\underline{4}$ and the 1-lithia-1-zincaalkene $\underline{15}$, easily obtained by a carbometallation reaction, are able to react successively with two different electrophiles to give good yields of various gem-difunctionalized compounds like the **a**-deuterated- and **a**-iodo- stannanes $\underline{7b-c}$ and the **a**-allylated thisethers $\underline{10a-b}$. This demonstrates the usefulness of compounds of type $\underline{4}$ and $\underline{15}$ as multi-coupling reagents. A new fragmentation reaction of alkylidene malonates is described.

Scheme 1

We have recently¹ shown that various gem-dimetallic compounds of type <u>1</u> are easily prepared by carbometallation of an alkenyl metallic derivative of Mg, Li or Al by an allylic zinc bromide. The different nature of the two metals present in compound <u>1</u> allows us to hope that a different reactivity of these two metals can be used to make successively two new bonds : first by reaction of the more reactive carbon-metal bond of <u>1</u> whith an electrophile E¹ leading to the organo-zinc derivative <u>2</u>, then by reaction of <u>2</u> with a different electrophile E² to furnish the gem-disubstituted compounds <u>3</u> (see scheme 1). Thus reagents of type <u>1</u> are potential multi-coupling² reagents.

In fact, we have now found that the 1-magnesia-1-zincaalkene³ $\underline{4}$ is able to react selectively with two different electrophiles under proper reaction conditions to give products of type $\underline{3}$. First, addition of iodine (1eq.) to a cooled THF solution of the dimetallic reagent $\underline{4}$ (10min, -78°), followed by hydrolysis gives the unsaturated iodide $\underline{5}$ in 61% (method A in scheme 2). The same product $\underline{5}$ is also obtained by treating the reagent $\underline{4}$ first with acetic acid (1eq. ; 15min ; -80° to -40°C), then with iodine (1eq.) to furnish 5 in 60% yield (method B in scheme 2). Scheme 2

Method A : 1/ $I_2(1eq.)$,-80°C,10min ; 2/ H_30^+ - Method B : 1/ AcOH(1eq.),-80° to -40°C,15min; 2/ $I_2(1eq.)$.

In a similar way, a THF solution of the dimetallic derivative $\underline{4}$ reacts readily with trimethyltin chloride⁵ (45min,-25° to -5°C) to give an intermediate zinc compound $\underline{6}$ which can then react with a second electrophile (H_30^+ , D_30^+ or I_2) to give the functionalized stannanes 7a-c in high yields (see scheme 3).

Scheme 3

The tin derivatives $\underline{7a}$ and $\underline{7c}$ are useful for the synthesis of other functionalized stannanes. Thus treatment⁶ of $\underline{7a}$ with m-chloroperbenzoic acid in $CH_2Cl_2 \cdot (1,8eq. of MCPBA; 2eq. of Na_2HPO_4, 0°C, 8hr)$ gives the epoxide $\underline{8}$ in 91% yield (see scheme 4). The α -iodo stannane $\underline{7c}$ reacts⁷ smoothly with potassium thiophenolate in THF (2hr, 25°C) to furnish the thioether 9 in 81% yield (see scheme 4).

Scheme 4

It is also possible to add simultaneously two different electrophiles to the reagent $\underline{4}$. Thus treatment of the dimetallic compound $\underline{4}$ with 5eq. of an allylic bromide and 2.3eq. of dimethyldisulfide (25°C, 20hr) furnishes the α -allylated thioethers <u>10a</u> and <u>10b</u> in 76% and 77% yield respectively (see scheme 5). If dimethyldisulfide is added alone to the reagent $\underline{4}$, then the aldehyde $\underline{11}$ is isolated after hydrolysis with 0.01N HCl in 53% yield (see scheme 5).

We found also that the addition of various alkylidene malonates of type <u>12</u> to the reagent <u>4</u> (-78°; 0.5hr) gives, after the fragmentation of the postulated Michael-adduct <u>13</u>, the dienes <u>14a-c</u> and diethyl malonate in good yields. The newly formed double bond is mainly Z (except if R^2 =Ph in malonate <u>12</u>), see scheme 6. This synthesis of 1,5-dienes of type <u>14</u> is complementary to a method recently developed (see the preceding publication) which leads to the (E)-1,5-dienes <u>14</u> (purity \geqslant 90% of (E)-isomer).

The 1-magnesia-1-zincaalkene $\underline{4}$ does not react with methyl iodide under various reaction conditions, however the corresponding 1-lithio-1-zincaalkene $\underline{15}$ furnishes the monomethylated alkene 16 in 58% yield (5eq. of MeI, 12hr, 25°C) ; see scheme 7.

1045

Scheme 7⁴

 $15 : R = C_6 H_{13}$ $16 : R = C_6 H_{13}$

We have demonstrated that the gem-dimetallic compounds of type $\underline{4}$ or $\underline{15}$ can form two new bonds with two appropriate electrophiles from a same carbon atom (see scheme 1). We continue our study on the reactivity of these 1,1-dimetallic reagents.

Acknoledgements

We thank Madame Monique Baudry for the synthesis of various starting materials, the Vieille Montagne Company for a generous gift of zinc of high purity and the C.N.R.S. for financial support (U.A. 473).

References and Notes

- 1. Synthesis and reactivity of gem-dimetallic organic compounds. Part 1 : preceding publication.
- For a definition of a multi-coupling reagent see : P. Knochel and D. Seebach, Tetrahedron Lett. <u>23</u>, 3897 (1982) ; for some recently developped allylic multicoupling reagents see : D. Seebach and P. Knochel, Helv. Chim. Acta, <u>67</u>, 261 (1984) ; P. Knochel and J.F. Normant, Tetrahedron Lett. <u>26</u>, 425 (1985) ; P. Auvray, P. Knochel and J.F. Normant, Tetrahedron Lett. <u>26</u>, 2329 (1985).
- 3. The real structure of this reagent can be more complex ; for a discussion see the preceding publication.
- 4. The yields indicated include the preparation of the dimetallic compound and its reactions with the two electrophiles E¹ and E² (see scheme 1). All the compounds obtained show correct spectroscopic data. (I.R., ¹H-NMR and ¹³C-NMR).
- The good reactivity of trimethyltin chloride with the methylene di-Grignard has been reported : J.W. Bruin, G. Schat, O.S. Akkerman and F. Bickelhaupt, J. Organomet. Chem. 288, 13 (1985).
- For similar transformations on tin derivatives see : R.W. Bott, C. Eaborn and T.W. Swaddle, J. Organometal; Chem. <u>5</u>, 233 (1966) ; D.J. Peterson, M.D. Robbins and J.R. Hansen, J. Organometal. Chem. 73, 237 (1974).
- 7. The α -iodo stannane $\underline{7c}$ reacts with Bu_2CuLi_2CN in THF (-50° to -20°C) to give, after hydrolysis, the tin derivative $\underline{7a}$ in 70% yield. This reaction constitutes one of the rare reactions where a cuprate promotes a halogen-copper exchange in such basic solvent. We investigate the synthetic potential of the intermediate 1-trimethylstannyl alkenyl copper reagent.

(Received in France 20 December 1985)